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Properties of the Probability Measure

For each property that follows, I assume that P (·) is a probability measure defined on
F and that events A and B are elements of F .

Property 1. P (Ac) = 1− P (A)

Proof. By definition, A and Ac are mutually disjoint and A ∪ Ac = Ω. By the second
axiom of probability, we know that P (Ω) = 1. Then:

P (Ω) = 1

P (A ∪ Ac) = 1 (Now apply axiom 3:)

P (A) + P (Ac) = 1

P (Ac) = 1− P (A)

We have now proven property 1. ■

Property 2. P (∅) = 0

Proof. By the second axiom of probability, P (Ω) = 1. Note that Ω and ∅ are disjoint.
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In addition, recall that the probability measure has an upper bound of 1. Therefore:

P (Ω ∪ ∅) = 1 (Use axiom 3:)

P (Ω) + P (∅) = 1 (Apply axiom 2:)

1 + P (∅) = 1

P (∅) = 0

We have proven property 2. ■

Property 3. P (A) ≤ 1

Proof. By the first axiom of probability, P (Ac) ≥ 0. From property 1, we know that
P (Ac) = 1− P (A). Then:

0 ≤ P (Ac)

0 ≤ 1− P (A)

P (A) ≤ 1

This proves property 3. ■

Property 4. If A ⊂ B, then P (A) ≤ P (B)

Proof. Because A ⊂ B, A = A ∩B. Applying the probability function yields:

P (A) = P (A ∩B)

P (A) = P (B)− P (B ∩ Ac)

P (A) + P (B ∩ Ac) = P (B)

Now we consider two cases. First, we consider the possibility that P (B ∩ Ac) = 0.
Then:

P (B) = P (A) −→ P (B) ≥ P (A)

Next, we consider the possibility that P (B ∩ Ac) > 0. Then:

P (B) = P (A) + P (B ∩ Ac)︸ ︷︷ ︸
>0

−→ P (B) ≥ P (A)
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There is not a third case where P (B ∩Ac) < 0 as the probability measure is defined on
[0, 1]. Therefore, in all cases P (B) ≥ P (A). This proves property 4. ■

Property 5. P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proof. Note that A ∪ B can be rewritten as A ∪ (B ∩ Ac). Applying the probability
function and the third axiom of probabilty gives:

A ∪B = A ∪ (B ∩ Ac)

P (A ∪B) = P (A) + P (B ∩ Ac)

Set B can also be rewritten:

B = (B ∩ A) ∪ (B ∩ Ac) (Apply axiom 3:)

P (B) = P (B ∩ A) + P (B ∩ Ac)

Now subtract P (B) from P (A ∪B):

P (A ∪B)− P (B) = P (A) + P (B ∩ Ac)− P (B ∩ A)− P (B ∩ Ac)

P (A ∪B) = P (A) + P (B)− P (B ∩ A)

This proves property 5. ■

Property 6. P (A ∪B) ≤ P (A) + P (B)

Proof. From property 5, we know that:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Now consider the case where P (A ∩B) = 0. Then:

P (A ∪B) = P (A) + P (B) −→ P (A ∪B) ≤ P (A) + P (B)

Next, consider the case where P (A ∩B) > 0. Then:

P (A ∪B) = P (A) + P (B)−P (A ∩B)︸ ︷︷ ︸
<0

−→ P (A ∪B) ≤ P (A) + P (B)

In all cases, P (A ∪B) ≤ P (A) + P (B), proving property 6. ■

3



Property 7. P (A ∩B) ≥ P (A) + P (B)− 1

Proof. From property 3, we know that P (A∪B) ≤ 1. From property 5, we know that:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Combining the two properties yields:

P (A) + P (B)− P (A ∩B) ≤ 1

P (A ∩B) ≥ P (A) + P (B)− 1

We have now proven property 7 ■

Other Proofs

Partitioning Theorem. If {B1, B2, ...} is a partition of Ω, then for any event A:

A =
∞⋃
i=1

A ∩Bi

and the sets (A ∩Bi) are mutually disjoint.

Proof. I start by taking any element a ∈ A. Because {B1, B2, ...} is a partition of Ω, a
must be an element of Bi for some i. Then, a must be an element of A∩Bi, for some i.
But because A∩Bi ⊂ ∪∞

i=1A∩Bi, a must also be an element of ∪∞
i=1A∩Bi. Therefore,

a ∈ A −→ a ∈ ∪∞
i=1A ∩Bi.

Now consider any element b ∈ ∪∞
i=1A ∩Bi. Because Bi is mutually disjoint with all

Bj for i ̸= j, a is an element of a single A∩Bi, for some i. If a ∈ A∩Bi, a must also be an
element of A, by definition of the intersection. Therefore, a ∈ ∪∞

i=1A∪Bi −→ a ∈ A.
Because a ∈ A −→ a ∈ ∪∞

i=1A∩Bi and a ∈ ∪∞
i=1A∪Bi −→ a ∈ A, we conclude

that:

A =
∞⋃
i=1

A ∩Bi

This proves the first part of the partitioning theorem. To prove the second part, we
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prove that the intersection of any A ∩Bi and A ∩Bj for i ̸= j is empty:

(A ∩Bi) ∩ (A ∩Bj) = A ∩ (Bi ∩Bj)

= A ∩ ∅

= ∅

This proves the second part of the partitioning theorem. ■

Principle of Equally-Likely Outcomes. If an experiment has N symmetric out-
comes a1, ...aN , then P (ai) =

1
N

.

Proof. Define Ω as the space consisting of {a1, ..., aN}. Then assign each outcome to
exactly one event (e.g. a1 ∈ A1, a2 ∈ A2,...). Then {A1, ...AN} is a partition of Ω. By
the third axiom of probability:

P (∪N
i=1Ai) =

N∑
i=1

P (Ai)

P (Ω) =
N∑
i=1

P (Ai)

Now impose symmetric outcomes and use the second axiom of probability. Then:

1 = NP (Ai)

1

N
= P (Ai)

Because each event has exactly one element, the event and its corresponding element
are equivalent. Then:

P (ai) =
1

N

This proves the claim. ■
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